برون یابی و شتاب موضعی از یک روش تکراری برای مسائل نقطه ثابت مشترک
پایان نامه
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه
- نویسنده میر شهرام صدر
- استاد راهنما محمد صادق عسگری محمد علی فریبرزی عراقی
- سال انتشار 1392
چکیده
در این پایان نامه، روش تکراری دنباله ای را برای مسائل نقطه ثابت مشترک از خانواده های عملگرهای کاتر روی فضای هیلبرت h، مورد مطالعه قرار می دهیم. عملگرهای کاتر دارای این خاصیت هستند که برای هر نقطهx درh ، اولاً ابر صفحه شامل tx بر x-tx عمود است و ثانیاً ابرصفحه شامل tx کل فضا را به دو نیم فضا تقسیم می کند که یکی شامل نقطه x و دیگری شامل مجموعه ی تمام نقاط ثابت عملگر t است. همچنین ما عملگرهای ترمیمی تعمیم یافته و برون یابی عملگرهای کاتر را تعریف و مورد بررسی قرار می دهیم. به علاوه برون یابی عملگرهای کاتر دوری را نیز می سازیم. در این چارچوب یک روش شتاب موضعی را برای ترکیب یک خانواده متناهی از عملگرهای کاتر مورد استفاده قرار می دهیم. برای این منظور، شرایط همگرایی الگوریتم تکراری را بررسی خواهیم کرد.
منابع مشابه
روش های تکراری برای مسائل نقطه ثابت
در این پایان نامه چند روش تکراری در قالب فضاهای هیلبرت وباناخ را ارائه می دهیم. پیرامون چگونگی یافتن یک جواب مشترک برای نامساوی های تغییراتی روی مجموعه نقاط ثابت نگاشت های غیرانبساطی و مسائل تعادلی بحث خواهیم کرد. بعلاوه چند قضیه همگرایی قوی برای هریک از این روش ها ارائه می دهیم. نتایجی که ارائه داده ایم روش های موجود را در قالبی کلیتر گسترش داده اند.
15 صفحه اولبرونیابی و تسریع موضعی یک فرآیند تکراری برای مسائل نقاط ثابت مشترک
فرآیند تکراری دنباله ای را برای مسائل نقاط ثابت مشترک از خانواده عملگرهای برش دهنده روی فضای هیلبرت درنظر می گیریم.این عملگرها ویژگی های زیر را دارند:برای هرنقطه x?h ابرصفحه ماربرtx به طوری که که نرمال آن x-tx فضارا به دو نیم فضا برش می دهد که یکی از این دو شامل x و دیگری با فرض غیرتهی بودن ،مجموعه نقاط ثابت t است.در این پایان نامه عملگرهای برش دهنده و ساختار عملگرهای برش دهنده دوری را مورد مطا...
یک الگوریتم تکراری برای مسایل تعادل تعمیم یافته، نامساوی تغییراتی و نقطه ثابت مبتنی بر روش گرادیان افزوده
مساله تعادل تعمیم یافته یک موضوع کاملا عمومی در زمینه های مختلف می باشد. از جمله حالت های خاص آنمی توان به مساله بهینه سازی، مساله نامساوی تغییراتی، مساله تعادل نش، و مساله مینیموم – ماکزیموم اشاره نمود. هدف این مقاله بررسی مساله تقریب یک جواب مشترک مجموعه جواب مساله تعادل تعمیم یافته ، مساله نامساوی تغییراتی و مساله نقطه ثابت می باشد. در این مقاله، یک الگوریتم تکراری جدید بر اساس روش گرادیان...
متن کاملقضیه همگرایی قوی روش تکراری براساس ضریب زاویه برای مسائل تعادل آمیخته و نقطه ثابت
هدف این پایان نامه بررسی مسئله ی نقطه تعادل آمیخته است که در پنج فصل تنظیم شده است. در فصل اول مقدمه ای از نظریه ی نقطه ثابت و نظریه ی تقریب بیان شده است که در فصل های آینده به آن ها نیاز داریم. در فصل دوم یک روش تکراری جدید بر اساس روش ضریب زاویه برای پیدا کردن عنصر مشترک مجموعه جواب های مسئله تعادل آمیخته، مجموعه نقاط ثابت خانواده ی متناهی از نگاشت های ناانبساطی و مجموعه جواب های نامساوی تغیی...
15 صفحه اولروش شتاب سهموی انتگرالگیری زمانی برای مسائل دینامیک سازهها
در این تحقیق یک روش جدید عددی انتگرالگیری زمانی برای حل معادلة دیفرانسیل حرکت پیشنهاد میشود. با افزایش مرتبه تغییرات شتاب در هر گام زمانی نسبت به روشهای کلاسیک، یک روش جدید انتگرالگیری با دقت بالا و بدون شرط پایدار معرفی شده است. در سازههای چند درجه آزادی برای میرا کردن اثر مُدهای مصنوعی از پاسخ سازه بایستی از یک الگوریتم انتگرالگیری با میرایی عددی استفاده شود. در روش پیشنهادی مُدهای غیر ...
متن کاملبرخی از روشهای تکراری برایپیدا کردن نقطه ثابت و برای حل مسائل مینیمم سازی محدب محدودشده
این پایان نامه در دو قسمت ارائه می شود. در قسمت اول، طرح تکرار صریح وضمنی برای بدست آوردن نقطه ثابت نگاشت های غیر انبساطی که روی زیر مجموعه ی محدب بسته ای از یک فضای هیلبرت حقیقی تعریف شده است معرفی می شود. بعلاوه همگرای قوی، دنباله های تولید شده به وسیله الگوریتم پیشنهادی را به نقطه ثابت نگاشت غیر انبساطی، مطالعه می کنیم. در قسمت دوم،طرح تکرار صریح وضمنی برای بدست آوردن مینیمم کننده تقریبی یک ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023